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ABSTRACT

We revisit the bias correction problem in current climate models, taking advantage of state-of-the-art

atmospheric reanalysis data and new data assimilation tools that simplify the estimation of short-term

(6 hourly) atmospheric tendency errors. The focus is on the extent to which correcting biases in atmospheric

tendencies improves the model’s climatology, variability, and ultimately forecast skill at subseasonal and

seasonal time scales. Results are presented for the NASA GMAO GEOS model in both uncoupled (atmo-

sphere only) and coupled (atmosphere–ocean) modes. For the uncoupled model, the focus is on correcting a

stunted North Pacific jet and a dry bias over the central United States during boreal summer—long-standing

errors that are indeed common to many current AGCMs. The results show that the tendency bias correction

(TBC) eliminates the jet bias and substantially increases the precipitation over the Great Plains. These

changes are accompanied by much improved (increased) storm-track activity throughout the northern

midlatitudes. For the coupled model, the atmospheric TBCs produce substantial improvements in the sim-

ulated mean climate and its variability, including a much reduced SST warm bias, more realistic ENSO-

related SST variability and teleconnections, and much improved subtropical jets and related submonthly

transient wave activity. Despite these improvements, the improvement in subseasonal and seasonal forecast

skill over North America is only modest at best. The reasons for this, which are presumably relevant to any

forecast system, involve the competing influences of predictability loss with time and the time it takes for

climate drift to first have a significant impact on forecast skill.

1. Introduction

Substantial progress has been made over the last few

decades to improve the ability of climate models to re-

produce the observed climate. For example, Flato et al.

(2013) provide an overview of the quality of the CMIP5

climatemodels (IPCC 2013), including a synthesis of our

confidence in the ability of models to simulate various

features of the twentieth century climate including means,

various modes of variability, trends, and extremes. They

conclude that overall, climate models are indeed getting

better in simulating climate (e.g., compared to CMIP3

models), providing greater confidence in the appropriate-

ness of these models for climate change studies.

Nevertheless, despite these overall improvements,

current climate models are far from perfect, and specific

biases appear to be especially detrimental to forecast
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skill on subseasonal to seasonal time scales, our focus

here. For example, during boreal summer, the mid-

latitude jets serve as waveguides for Rossby waves en-

tering North America and Europe (e.g., Schubert et al.

2011; Wang et al. 2017). Any deficiencies in the simu-

lation of the summer jets would therefore likely affect

our ability to predict Rossby wave impacts on weather

and climate extremes over the northern continents.

During boreal winter, the hydroclimate of North

America is strongly affected by moisture influx from the

North Pacific (e.g., Wang and Schubert 2014) that is

linked to North Pacific synoptic systems steered by the

jet stream. Indeed, the occurrence of drought along the

West Coast of the United States is especially sensitive

to the strength and position of the planetary waves,

especially the west coast ridge (e.g., Seager et al. 2015);

such waves are linked to modes of internal atmo-

spheric variability such as the Pacific–North American

(PNA) pattern, as well as to ENSO and other tropical

SST anomalies (e.g., Seager et al. 2015; Seager and

Henderson 2016).

The degree of verisimilitude required in simulating

these modes (as well as the mean state) for improving

forecast skill at subseasonal and seasonal scales is un-

clear. Corrections to model biases can be made ‘‘after

the fact’’; operational forecasts can be postprocessed to

deal with climate-drift estimates determined from long

histories of reforecasts (e.g., Kirtman et al. 2014), and

biases in variability can be corrected through such

methods as quantile mapping (e.g., Cannon 2016). Such

approaches, however, can only go so far—they cannot

correct, for example, for the complete absence of a

critical atmospheric mode or linkage during a forecast.

Indeed, certain forecast deficiencies can only be avoided

by improving the accuracy of themodel simulation itself.

Given the difficulty of addressing certain model

biases quickly through model improvement, some have

considered a stopgap approach: introducing empiri-

cally determined ‘‘online’’ corrections to the model’s

tendency equations. A number of studies have exam-

ined the impact of such statistical corrections to early

operational and/or simplified numerical models with a

focus on developing methods for improving weather

forecasts (e.g., Leith 1978; Schemm and Faller 1986;

Saha 1992; DelSole and Hou 1999). In a recent study,

Danforth et al. (2007) addressed the problem of

estimating and correcting model errors using two sim-

plified but realistic GCMs. They found that online

state-independent corrections result in significant im-

provements in the skill of weather forecasts, improve-

ments that are larger than those obtained with a

posteriori corrections. They further found that state-

dependent corrections resulted in worse prediction skill

due to sampling errors in the estimation of the full co-

variance matrix, though they were able to obtain some

improvements by localizing the covariance matrix, or

alternatively by introducing an SVD-based formulation

of the correction operator. We note that another ap-

proach, based on historical analogs, that takes into ac-

count the possible state dependence of errors has been

shown to be successful (when applied after the fact) in

reducing biases in the planetary-scale waves in medium-

range forecasts (Yu et al. 2014a,b).

In this study, we revisit the bias correction problem,

employing a state-of-the-art reanalysis (MERRA-2)

and modern data assimilation tools to correct the sys-

tematic model tendency errors in both uncoupled [at-

mospheric general circulation model (AGCM)] and

coupled [atmosphere–ocean general circulation model

(AOGCM)] versions of the NASA Global Modeling

and Assimilation Office (GMAO) GEOS model. Rather

than weather forecasting, our focus here is on examining

the extent to which correcting the short-term model

tendency biases leads to improvements in some of the

GEOS model’s long-standing mean climate biases [e.g.,

in the North Pacific summer jet (NPSJ), the boreal

winter stationary waves, and the intertropical conver-

gence zone (ITCZ)]—biases that are indeed found in a

number of AGCMs and AOGCMs. In addition, we ex-

amine whether there are any associated improvements

in the simulation of weather and climate variability as

well as in the forecast skill attained over North America

at subseasonal to seasonal time scales.

Section 2 describes the methodology used, the GEOS

model, and the experiments performed. Section 3a

(section 3b) shows the impact of the bias corrections on

the climatic means, variances, and covariances simu-

lated in the uncoupled (coupled) versions of the model,

and section 3c examines their impact on subseasonal and

seasonal forecast skill over North America. Discussion

and conclusions are provided in section 4.

2. Methodology and model experiments

a. Estimating the tendency biases

The GEOS data assimilation system currently uses an

increment analysis update (IAU) procedure designed to

reduce analysis-induced initial shocks in the model fore-

cast phase of the assimilation cycle (Bloom et al. 1996).

The IAU procedure incorporates a constant analysis in-

crement due to each atmospheric analysis, gradually

(over the course of the analysis period) as a forcing

term in themodel tendency equations.Any nonzero long-

term average of the IAU increments is what we define

here as the ‘‘tendency bias’’ of the model—a bias that
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presumably causes the model to drift away from the re-

analysis climate during the course of a long-term fore-

cast. To be clear on terminology, our use of the word

‘‘bias’’ refers to time mean differences between the

model forecasts and observations (or reanalysis) that are

functions of forecast lead time. As such, the tendency

bias (as defined above) and the model’s climatological

bias (that obtained from a free-running climate simula-

tion) represent the two end points of the bias evolution

(also referred to here as the drift), with the former

measuring how the model initially starts to drift away

from the observed climate and the latter measuring

where it ends up (after themodel loses all memory of the

initial state). A key question we address here is, To what

extent does correcting the initial bias correct the cli-

matological bias of the free-running model?

The IAU approach can be applied ‘‘after the fact’’

by using an existing reanalysis and a sequence of short-

term forecasts to estimate the increments, correcting the

model accordingly at each time step—basically mim-

icking the IAU procedure used during an assimilation.

Such an approach, referred to as ‘‘replay’’ (Orbe et al.

2017; Takacs et al. 2018), can be used with an existing

reanalysis to force a model to remain close to that re-

analysis at each time step. The tendency bias correction

(TBC) method is essentially a replay, but instead of

applying the increment from a specific forecast-analysis

difference, it applies a long-term averaged increment

(retaining the diurnal and annual cycles) at every time

step. Details of the methodology are provided in the

appendix. In this way, TBC takes advantage of an ex-

isting assimilation or previously generated replay to

estimate the long-termmean model tendency biases and

uses them as additional forcing terms in the model

equations. It is assumed that the TBCs reflect error

growth that is linear and therefore should provide a

reasonable estimate of the biases in the model tenden-

cies, subject to any observational/analysis biases (e.g.,

Xue et al. 2013; Bhargava et al. 2018).

Since the uncoupled model used here is the same as

that used to produce MERRA-2 (though run at a lower

resolution), the tendency bias terms for u, y, T, q, and ps
are taken directly from the MERRA-2 increments for

the period 1980–2015, averaged to the lower resolution

(nominally 18). This, while likely not optimal as com-

pared to using a new replay to MERRA-2 at the lower

resolution, was done for practical reasons. Recent work

suggests some dependence of the results on resolution

(e.g., Achuthavarier et al. 2017).

Our initial attempt at correcting the coupled model

was to simply correct the atmospheric fields (i.e., to

impose the tendency bias terms derived fromMERRA-

2) and then couple the corrected atmosphere to the

ocean. This, however, resulted in spurious feedbacks to

the corrections in the tropics that apparently result

from a mismatch between the atmospheric biases in the

coupled and uncoupled models. We instead found it

necessary to carry out a replay to MERRA-2 while

running in coupled mode. It is important to note that,

even for the coupled model, we correct only atmo-

spheric quantities.1 Thus, in our coupled simulations, the

ocean is only indirectly constrained by imposed correc-

tions. There is, however, one important difference be-

tween our use of TBC in our coupled and uncoupled

simulations: In the coupled simulations, only the fields u,

y, T, and ps are corrected with the mean increments.

Specific humidity is not corrected.2

b. The uncoupled and coupled GEOS-5 model

The results presented here are based on two different

versions of the GEOS-5 model: an atmosphere-only ver-

sion and a coupled atmosphere–ocean version. This al-

lows us to address different model deficiencies and their

corresponding impacts on forecast skill. More generally,

it lets us assess the performance of the TBC approach

within both coupled and uncoupled environments.

The uncoupled GEOS model used here is the same

AGCM used to generate MERRA-2, though here the

model is run at a coarser horizontal resolution (ap-

proximately 18). As described inGelaro et al. (2017), this

AGCM includes the finite-volume dynamical core of

Putman and Lin (2007), which uses a cubed sphere

horizontal discretization and 72 hybrid eta levels from

the surface to 0.01 hPa. Recent upgrades to the physical

parameterization schemes (in going from the original

MERRA to MERRA-2) include increased reevapora-

tion of frozen precipitation and cloud condensate,

changes to the background gravity wave drag, and

an improved relationship between the ocean surface

roughness and ocean surface stress. The model also

includes a Tokioka-type trigger on deep convection as

part of the relaxed Arakawa–Schubert (RAS; Moorthi

and Suarez 1992) convective parameterization scheme

(Bacmeister and Stephens 2011). A new glaciated land

representation and seasonally varying sea ice albedo

were implemented for MERRA-2, leading to improved

air temperatures and reduced biases in the net energy

flux over these surfaces (Cullather et al. 2014). The

1We did not consider trying to also correct the ocean since it is

unclear that the ocean analysis are of sufficient quality to estimate

the necessary biases, though this may ultimately be the best

approach.
2 This was done out of an initial concern about possible negative

impacts on freshwater flux into the oceans, though this has since

been found to not be an issue.
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model includes the catchment land surface model

developed by Koster et al. (2000). Further details about

this version of theGEOSAGCMcan be found inMolod

et al. (2015).

The coupled model (AOGCM) used here is part of

the subseasonal to seasonal (S2S) prediction system

that is (at the time of this writing) being used by the

GMAO to provide forecasts to the North American

Multimodel Ensemble (NMME) project on a real-time

basis (though here our coupled model is run at coarser

resolution). The model is described in more detail in A.

M. Molod et al. (2018, unpublished manuscript). The

AGCM component of the AOGCM is a more recent

version of the GEOSAGCM (described above) though

it is fundamentally the same as the MERRA-2 version.

The new AGCM includes parameter changes to en-

hance surface drag over land and oceans, to enhance

form drag, and to enhance parameterized convection

in the extratropics, all designed to improve weather

forecast skill.

The ocean component of the GEOS AOGCM is the

Modular Ocean Model, version 5 (MOM5), developed

at the Geophysical Fluid Dynamics Laboratory de-

scribed in Griffies et al. (2005). The sea ice component

is the CICE 4.1 model developed by the Los Alamos

National Laboratory (Hunke and Lipscomb 2010).

The ocean and atmosphere exchange fluxes of mo-

mentum, heat, and freshwater through a ‘‘skin layer’’

interface that includes a parameterization of the diurnal

cycle.

c. The experiments

TheAGCMandAOGCMexperiments analyzed in this

study are listed in Table 1. Both models were forced with

time-varying greenhouse gases (GHGs) as described in

appendix A of Schubert et al. (2014). The AGCM simu-

lations (forced with the same observed SST and sea ice

fraction used in MERRA-23) consist of (i) a long-term

control simulation (CNTRL-A) and (ii) a simulation

(TBC-A) equivalent to CNTRL-A, but for the continual

correction of the model tendency biases using the TBC

approach, with the correction terms (in u, y, T, q, and ps)

taken directly from MERRA-2. The CNTRL-A model

and the TBC-Amodel were also used to produce hindcasts

(with observed SST) initialized from MERRA-2. In this

set of hindcasts, the hindcast year’s data are excluded

from the estimation of the bias correction terms.

The AOGCM simulations consist of a long control

simulation (CNTRL-C), a run replayed to theMERRA-

2 atmosphere fields of u, y, T, and ps (REPLAY-C),

and a third run (TBC-C) in which the TBC approach

is used to correct the u, y, T, and ps tendencies, using

corrections estimated from REPLAY-C. In addition, sea-

sonal hindcasts were produced using both the CNTRL-C

TABLE 1. A summary of the AGCM and AOGCM experiments.

Expt No. Expt name Description Model SST

1 CNTRL-A simulation 36-yr control simulation for the period

1980–2015

AGCM without TBC Observed

2 TBC-A simulation 36-yr TBC simulation for the period 1980–

2015

AGCM with TBC Observed

3 CNTRL-A hindcasts Hindcasts initiated every day from 1 May

to 30 Jun and run through the end of

August for 1988, 1998, and 2000–15

AGCM without TBC Observed

4 TBC-A hindcasts Hindcasts initiated every day from 1 May

to 30 Jun and run through the end of

August for 1988, 1998, and 2000–15

AGCM with TBC Observed

5 CNTRL-C simulation 36-yr control simulation for the period

1981–2016

AOGCM without TBC Predicted

6 REPLAY-C simulation 36-yr replay to MERRA-2 for the period

1981–2016

AOGCM replayed to MERRA-2 Predicted

7 TBC-C simulation 36-yr simulation with TBC for the period

1981–2016

AOGCM with TBC Predicted

8 CNTRL-C hindcasts 10-member ensemble hindcasts initialized

every 1 Nov and run through 1 Apr of

the following year for 1985–2015

AOGCM without TBC Predicted

9 TBC-C hindcasts 10-member ensemble hindcasts initialized

every 1 Nov and run through 1 Apr of

the following year for 1985–2015

AOGCM with TBC Predicted

3As summarized in Gelaro et al. (2017), the MERRA-2 SST is

based on a combination of different high-resolution daily NOAA

OISST and Operational SST and Sea Ice Analysis (OSTIA)

products, though prior to 1 January 1982, it is based on the CMIP

midmonthly 18 data.
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model and the TBC-C model, with initial conditions

taken from REPLAY-C (again, with the hindcast year’s

data excluded from the estimation of the bias correction

terms).

3. Results

We present here the results of applying the TBC to the

GEOS model. Sections 3a and 3b focus on the impacts on

the climatological biases of the AGCM and AOGCM,

respectively, while section 3c examines the impact on

forecast skill.

a. TBC in the uncoupled model

The impact of TBC on the mean climate and climate

variability in the AGCM is estimated from the TBC-A

and CNTRL-A simulations (see Table 1). Climatological

biases are defined here as long-term averaged dif-

ferences from MERRA-2 and other observations as

indicated below.

Figures 1 and 2 show the impact of the TBC on the

zonal mean climatological biases for DJF and JJA, re-

spectively, for the u wind and specific humidity. We

present, in the left panels, the climatological biases

(CNTRL-A–MERRA-2), in the middle panels the im-

provement with TBC (TBC-A–MERRA-2), while in

the right panels we show (TBC-A–CNTRL-A) to more

clearly illustrate the impact of the TBC. The zonal wind

biases in CNTRL-A are characterized by a poleward

shift of the jets in both summer hemispheres (evident

from the north–south dipole structure of the differ-

ences), with some tendency for an equatorward shift in

the winter hemispheres. In TBC-A, the poleward shift of

the summer jets is substantially corrected, especially

FIG. 1. (top) The zonal mean u wind (m s21) and (bottom) specific humidity (g kg21). (left) The shading indicates CNTRL-A 2
MERRA-2 with the climatological MERRA-2 wind fields contoured every 5m s21 in the top panels, and the MERRA-2 climatological

specific humidity contoured every 1 g kg21 in the bottompanels. (middle)As in left, but for TBC-A2MERRA-2. (right)As in left, but for

TBC-A 2 CNTRL-A. All fields are averaged for DJF over the years 1980–2015.
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during JJA. There is less improvement in the winter jets;

in fact, the SH high latitudes show, for TBC-A, an in-

creased positive zonal wind bias during JJA (Fig. 2, top

center and right). The reason for this is unclear but likely

reflects a cold bias that develops during JJA throughout

the troposphere over the SH polar regions in TBC-A.

Section 4 provides a discussion of possible reasons for

why the TBC does less well in correcting the climato-

logical biases in some regions/seasons. TBC also acts to

reduce substantially the zonal mean specific humidity

climatological biases, especially the relatively large

positive biases that occur in the lower/midtroposphere

on either side of the equatorial moisture maximum

during DJF (Fig. 1, bottom), as well as the biases in the

midlevel tropics (just south of the equatorial maximum)

and lower-tropospheric NH midlatitudes during JJA

(Fig. 2, bottom).Wenote that in both seasons, theTBC-A

acts to correct (strengthen) the upward motion regime

of the tropics, so much so that the simulated Hadley cell

is essentially indistinguishable from that in MERRA-2

(not shown).

Figure 3 shows the results for the 250mb (1mb 5
1 hPa) u wind (left column), 2-m temperature over land

(T2m; middle column), and precipitation (right column)

for JJA. Here again, we present in the top panels the

climatological biases (CNTRL-A–MERRA-2), in the

middle panels the improvement with TBC (TBC-A–

MERRA-2), while in the bottompanelswe show (TBC-A–

CNTRL-A) tomore clearly illustrate the impact of theTBC.

The impact of TBC-A is to eliminate almost completely the

prevailing zonal wind climatological biases throughout

the NH, especially the weak jet in the North Pacific. In

the SH, where the biases are much weaker to start with,

TBC-A is less effective, and in fact (as we saw in Fig. 1)

generates a positive zonal wind bias at high latitudes. In

the NH, the impact of TBC-A on JJA T2m is remark-

able, as it eliminates most of the large positive biases,

especially those over Asia and North America. The

FIG. 2. As in Fig. 1, but for JJA.
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climatological precipitation biases (Fig. 3, top right)

also show substantial improvement in many regions,

with a reduction of large biases over Tibet, the Mari-

time Continent, the ITCZ, the NH storm tracks, and

North America (middle-right panel of Fig. 3), impacts

that are perhaps more clearly seen from the TBC-A–

CNTRL-A fields in the bottom-right panel of Fig. 3.

Particularly noteworthy is the substantial reduction in

the dry bias over the U.S. Great Plains, a long-standing

problem in the GEOS model and many other climate

models (e.g., Lin et al. 2017). The TBC-A impact, how-

ever, is not positive everywhere, with the increased wet

bias over India being perhaps themost glaring deficiency.

We next turn our attention to the transients during

JJA (Fig. 4). These are based on 6-hourly data (with the

monthly means removed) and include the time mean

vertically integrated zonal momentum transport (u0y0;
left panels), the 250-mb meridional wind variability [y02;
middle panels—a measure of storm-track activity (e.g.,

Chang and Fu 2002)], and the 850-mb moisture trans-

port (y0q0; right panels). The climatological biases in all

three quantities are apparent, and there are substantial

corrections in the NH with TBC-A. In particular, sub-

stantial improvements are seen in the NH momentum

transport, especially in the North Pacific and North

Atlantic jet exit regions, where the high-frequency

eddies are expected to maintain the mean jet through

barotropic decay (e.g., Chang et al. 2002).Also, the negative

biases in y02 (indicating weak storm tracks) seen in

CNTRL-A, especially in the eastern North Pacific and

FIG. 3. (left) The 250-mb zonal wind (m s21), (middle) 2-m temperature (8K), and (right) precipitation (mmday21). The shading

indicates the (top) CNTRL-A2MERRA-2, (middle) TBC-A2MERRA-2, and (bottom) TBC-A2 CNTRL-A. In the left panels, the

contours indicate climatological mean 250-mb zonal winds from MERRA-2 (contoured every 5m s21). All fields are averaged for JJA

over the years 1980–2015. The MERRA-2 precipitation is an observationally corrected field (Gelaro et al. 2017).
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the North Atlantic, are reduced in TBC-A by more

than a factor of 2 in many places, an improvement that

occurs in conjunction with the improved (strengthened)

jet in these regions. Similar improvements are seen for

moisture transport, with substantial increases in north-

ward transport in the NH storm tracks in TBC-A. Also

of note for TBC-A is the increased northward moisture

transport over the central United States, an improve-

ment that very likely contributes to the aforementioned

increased precipitation in this region. The TBC appears

to be less effective in improving the JJA transients in the

SH, especially over the high-latitude oceans.

b. TBC in the coupled model

We now examine the impact of applying the atmo-

spheric TBCs obtained from REPLAY-C to the fully

coupled GEOS-5 AOGCM. In assessing the impact of

TBC, we compare the TBC-C results to those from both

the CNTRL-C and the REPLAY-C runs. As described

in section 2, the replay approach allows us to force any

model to remain close to the reanalysis during the

course of an integration, providing as a by-product

the information needed to compute the TBC terms. If

the model used in the replay is identical to that used to

produce the original reanalysis, then one simply re-

produces that reanalysis exactly. If, on the other hand,

the modeling system differs from that of the reanalysis

[as it does here for three reasons: we use an updated

AGCM (see above), we couple this AGCM to an ocean

model, and we run at a lower resolution], identical re-

sults are not guaranteed, especially for quantities (e.g.,

precipitation) that are not directly constrained by the

analysis increments. Given these considerations, the

replayed results (REPLAY-C) can be considered an

upper bound to what can be achieved from the TBC.

Further details of the replay approach and some caveats

FIG. 4. (left) The vertically integrated momentum flux by the transients [(m s21)2], (middle) the 250-mb square of the transient com-

ponent of themeridional wind [(m s21)2], and (right) the 850-mbmoisture flux by the transients (g kg21 m s21). The shading indicates (top)

CNTRL-A 2 MERRA-2 and (bottom) TBC-A 2 MERRA-2. In the left panels, the contours are the 250-mb climatological zonal wind

from MERRA-2 (every 5m s21). In the middle panels, the contours indicate the long-term mean of the 250-mb square of the transient

component of themeridional wind fromMERRA-2 [every 50 (m s21)2]. In the right panel, the contours indicate the long-termmean of the

850-mb moisture flux by the transients from MERRA-2 (every 1 g kg21 m s21).
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concerning the stability of the procedure can be found in

Takacs et al. (2018).

Figure 5 (left panels) shows the biases for the annual

mean SST. The top-left panel shows that the replay

approach (REPLAY-C) is able, for the most part, to

reproduce the annual mean observed (Reynolds) SST.

In contrast, the free-running CNTRL-C (middle-left

panel) shows large positive SST biases over much of the

tropics and SH. These biases are essentially eliminated

when TBC is applied (bottom left). In fact, the perfor-

mance of the TBC-C simulation is quite similar to that of

REPLAY-C over much of the world’s oceans. TBC-C

also reduces the cold biases in the North Pacific, though

not to the extent seen in REPLAY-C. While TBC-C

provides little improvement in the tropical SST annual

cycle (not shown), this cycle is already fairly realistic in

CNTRL-C. In fact, TBC-C seems to have introduced a

slightly exaggerated annual cycle in the central Pacific.

The impact of TBC-C on tropical SST variability is

shown in the right three panels of Fig. 5. CNTRL-C

clearly has excessive variability (tied toENSO) compared

with the observations. In contrast, the variability in the

TBC-C run has more reasonable amplitude, though TBC

does miss very strong events of the type that occurred

in nature during this time period (e.g., 1982/83, 1997/98,

2015/16).4 As a result, the overall SST variability in TBC-C

is somewhat weaker than the observed variability.

Turning next to the results for the zonal mean

atmosphere, TBC-C produces substantial reductions in

FIG. 5. (left) The long-term mean SST bias with respect to observations (ERSST.v4; Huang et al. 2015). Results are shown for (top)

REPLAY-C, (middle) CNTRL-C, and (bottom) TBC-C. (right) Evolution of themonthlymean equatorial SST anomalies (28S–28N) from

1980 to 2016, for CNTRL-C, TBC-C, and the observations (K). All fields in the left panels are averaged over the years 1981–2016.

4We note that there is no reason for the simulations to have

ENSO events synchronized with those in nature, though the

models are run with observed CO2 and other greenhouse gases,

explaining the positive trend seen in the SST in both the observed

and simulated SSTs.
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the biases of the zonal mean zonal wind almost every-

where (and especially in the subtropics) for both seasons

(Figs. 6, 7, top). The improvement in the zonal mean

specific humidity (Figs. 6, 7, bottom) is also substantial,

highlighted by the elimination of the wet biases in

CNTRL-C in the tropics and SH during both seasons (it

is noteworthy that this occurs despite not correcting the

moisture). We note that the TBC-C produces little

improvement in the zonal mean vertical motion during

DJF (not shown) in contrast to the improvement seen in

the AGCM simulations. However, there is a rather

substantial improvement during JJA including a reduc-

tion in the anomalous upward motion in the upper tro-

posphere just north of the equator.

Figure 8 shows the biases in the DJF (left) and JJA

(right) precipitation for REPLAY-C (top), CNTRL-C

(middle), and TBC-C (bottom).We see that much of the

excessive precipitation that occurs just north of the

equator in the Pacific during both seasons in CNTRL-C

is reduced in the REPLAY-C run, as is the excessive

precipitation in the tropical Atlantic and the Indian

Ocean. The large dry bias over India and wet bias over

Southeast Asia during JJA in CNTRL-C are also

reduced in REPLAY-C. REPLAY-C does introduce a

substantial dry bias over South America during DJF

that is not evident in CNTRL-C. REPLAY-C also does

little to reduce the dry bias over the U.S. Great Plains;

in fact it appears to exacerbate it compared to the con-

trol. Since winds and temperature in the replay are

essentially the same as those in MERRA-2, the lack of

improvement in the precipitation over the U.S. Great

Plains and the other regions mentioned above almost

FIG. 6. The (top) zonal mean u wind (m s21) and (bottom) specific humidity (g kg21). (left) The shading indicates CNTRL-C 2
MERRA-2 with the climatological MERRA-2 wind fields contoured every 5m s21 in the top panels and the MERRA-2 climatological

specific humidity contoured every 1 g kg21 in the bottom panels. (middle)As in left two panels, but for TBC-C2MERRA-2. (right) As in

left two panels, but for TBC-C 2 CNTRL-C. All fields are averaged for DJF over the years 1980–2015.
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certainly reflects the fact that we do not replay the

moisture in the AOGCM.

The TBC-C run produces some of the same im-

provements indicated above for the REPLAY-C run.

The TBC-C is, however, less effective in reducing the

excessive Pacific precipitation that occurs north of the

equator, especially during DJF; in fact, TBC-C appears

to be slightly worse than CNTRL-C in the eastern

tropical Pacific, with a dry bias just south of the equator

and a somewhat larger wet bias south of that. During

JJA, TBC-C successfully reduces the dry bias over India,

reduces the wet bias over Southeast Asia, and is some-

what more successful (cf. DJF) in reducing the excessive

precipitation over the tropical Pacific.

We note that while TBC-C does produce overall

more realistic atmospheric (e.g., OLR) variability in the

tropics, primarily by reducing the excessive variance

found in the CNTRL-C run (not shown), it does little to

improve theMJO, though the CNTRL-C model already

produces a fairly realistic but weaker-than-observed

MJO (D. Achuthavarier 2018, personal communication).

We next focus on DJF, with an eye toward assessing

how TBC-C affects ENSO-related teleconnections over

North America during that season. Since ENSO has

large impacts on the North Pacific/North American jet

and stationary waves, improvements in the climatol-

ogies of those aspects of the flow should have positive

impacts on ENSO-related teleconnections. Figure 9

(left) shows that TBC-C corrects the excessive subtro-

pical westerly winds that extend across theNorth Pacific,

the southern United States, and the North Atlantic. It

also eliminates the easterly bias in the eastern tropical

Pacific. It does little to correct the relatively small biases

seen for CNTRL-C in the SH. The TBC-C run also sub-

stantially improves the boreal winter stationary waves

(Fig. 9, right), particularly the position, structure, and

amplitude of both the ridge over the west coast of North

America and the upstream trough.

FIG. 7. As in Fig. 6, but for JJA.
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Turning next to the DJF transients (Fig. 10), we see

that CNTRL-C has anomalously large transient wave

activity (as reflected in the 250-mb kinetic energy; left)

centered at about 308N and generally over the conti-

nents. This bias, which is presumably linked to the ex-

cessive subtropical westerlies noted earlier, is corrected

in the TBC-C run. In fact, TBC features transients that,

compared to MERRA-2, are slightly too weak in the

NH and, while somewhat improved, remain too weak

in the SH. TBC-C shows large improvements in the

NH 200-mb zonal momentum flux (middle) and also

shows improvements in the 850-mb transient moisture

transport (right), particularly just south of the storm-

track regions.

On interannual time scales, TBC-C primarily acts to

reduce some of the excessive DJF stationary wave var-

iance that occurs in CNTRL-C over the northeast Pa-

cific, northern Eurasia, and eastern North America

(Fig. 11, left). While these impacts are positive overall,

the reduction over the eastern North Pacific results

in a variability that is now somewhat too weak. The

reductions are likely due to TBC-C-induced changes

in the (now reduced) variability of the tropical Pacific

SST linked to ENSO, which is known to contribute to

the height variability over the North Pacific/North

American region (e.g., Diaz et al. 2001). The interannual

link between the tropical Pacific SST and the 250-mb

eddy-height field for DJF is quantified in Fig. 11 (right)

in terms of the correlation between eddy height and the

Niño-3.4 index. TBC-C shows a weakening of certain

biases seen in CNTRL-C, particularly the unrealistically

strong negative correlations over much of the United

States and southern Canada and the strong positive

correlations to the north. The overall spatial pattern of

the correlations over the North Pacific/North American

region is also improved.

c. Forecast skill

In this section, we assess the degree to which TBC

increases forecast skill over North America in both the

uncoupled [section 3c(1)] and coupled model [section 3c

(2)]. In the uncoupled case, we focus on boreal summer

FIG. 8. The precipitation biases (mmday21) with respect to MERRA-2 observationally

corrected precipitation for (left) DJF and (right) JJA. Results are shown for the (top) replay

run, (middle) control, and (bottom) TBC run. All fields are averaged over the years 1981–

2016.
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and subseasonal time scales, for which coupling to the

ocean is likely of secondary importance. In the coupled

case, we focus on boreal winter and seasonal time scales,

for which ENSO is known to have an important impact

on forecast skill.

1) BOREAL SUMMER AND THE UNCOUPLED

MODEL

Our focus here is on the extent to which the improve-

ments in the subtropical/midlatitude jets and transients in

the TBC-A model described in section 3a lead to im-

provements in subseasonal boreal summer forecast skill

over North America. The skill assessment is based on a

series of hindcasts initialized in late spring and running

through August produced with both the CNTRL-A and

TBC-Amodels (see section 2c). Note that in the following

we use the terminology hindcasts and forecasts inter-

changeably, keeping inmind that these simulations are not

true forecasts; in these atmosphere-only runs, observed

SSTs are prescribed throughout the forecast period.

The connection between forecast skill and the quality

of a model’s climate (including variability) is not

straightforward, though it seems plausible that a model

with a better long-term climate should have better

forecast skill. Even if that is the case, correcting cli-

mate drift (which is a function of forecast lead time;

see section 2a) can presumably only lead to improved

forecast skill if a substantial amount of the bias (and its

correction) occurs before all predictability is lost. There-

fore, these two time scales (associated with drift develop-

ment and predictability) serve to define a window of

forecast leads during which TBC can be expected to have

an impact on skill. For example, if it turns out that it takes

three months for the drift in the CNTRL to fully develop

into the long-term climate bias, and if the underlying pre-

dictability limit is 20 days, it is unlikely that any small cor-

rection (madebyTBC) to the still-small bias in theCNTRL

during thefirst 20 dayswouldhavemuch impact on forecast

skill. To help address this issue we decompose the total

mean square error (MSE) into the following terms:

h(F2O)2i5 [(hFi2 hFi)2 (O2O)]2

1 h(F2 hFi)2i1 (hFi2O)2 , (1)

where the angle brackets denote an ensemble mean and

the overbar a timemean; also F denotes a forecast andO

denotes the observations (MERRA-2). The first term on

FIG. 9. (left) The DJF zonal wind biases with respect to MERRA-2 for (top) CNTRL-C,

(middle) TBC-C, and (bottom) TBC-C 2 CNTRL-C. Units are m s21. (right) The DJF sta-

tionary waves (250-mb height with the zonal mean removed) for (top) CNTRL-C, (middle)

TBC-C, and (bottom) MERRA-2. Units are m.
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the right-hand side (RHS) is the MSE after first re-

moving the respective time means. We will refer to this

term as the unbiasedMSE. The second term on the RHS

is the MSE of a perfect model (the ensemble mean

predicting one ensemble member), and the third term is

the MSE associated with the climate drift. This latter

term quantifies the evolution of the bias or drift as

discussed earlier, saturating at long leads (when the

forecast has lost all memory of the initial conditions) to

the square of the climatological bias.

The top-left panel in Fig. 12 shows the decomposi-

tion for the 250-mb uwind (in terms of RMSE, averaged

over the NH),5 and the middle-left panel shows the

decompositionfor the 250-mb y wind (averaged over the

midlatitude North Pacific). These two quantities should

give us a sense for how the drift in the waveguide evolves

(u250mb) and the extent to which the Rossby waves

themselves are predicted more accurately (y250mb).

Both the u-wind and the y-wind total errors (blue

curves) saturate by about 15 days (slightly longer for the

u wind) regardless of whether the model is corrected

or not. This reflects the underlying predictability limits

of the model (red curves), which is about 20 days. The

unbiased RMSE (black curves) indicate no improve-

mentin the v-wind TBC-A skill compared to CNTRL-A

by this metric. The bottom-left panel of Fig. 12 shows

that there is, however, apparently some very modest

improvement in the correlation beginning somewhat

before day 10, though this occurs only after the skill for

both CNTRL-A and TBC-A is rather small (about 0.3).

To assess whether these averaged results represent sig-

nificant improvements, we show in the right panels of

Fig. 12 an example of the spatial distribution of the

FIG. 10. (left) (top) CNTRL-C 2 MERRA-2 and (bottom) TBC-C 2 MERRA-2 of the 250-mb kinetic energy associated with the

transient component of the winds [(m s21)2]. (middle) As in left panels, but for the 250-mb zonal momentum flux by the transients

[(m s21)2]. (right) As in left panels, but for the 850-mb moisture flux by the transients (g kg21 m s21). All fields are averaged for DJF over

the years 1981–2016.

5 The values are obtained by first computing the MSE at each

grid point. These values are then averaged over the indicated re-

gions, after which the square root is taken to obtain the RMSE.

Correlations are computed similarly with the covariances com-

puted at each grid point and then averaged over the indicated

regions.
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correlations at a lead of 12 days. The differences show

generally positive values with statistically significant

improvements along the storm track—the region we

would expect to see improvements in light of the im-

proved North Pacific jet. We note that in comparison,

the perfect-model correlations are substantially larger

than the actual correlations (above 0.4 at 10 days),

suggesting that further improvements in skill may be

possible.

The fact that the improvement in the vwind is modest

and does not occur until after the first week in the

forecasts likely reflects the fact that the bias in the uwind

(the waveguide) develops slowly over the course of

about two months (Fig. 12, top left; green curves). As a

result, any impacts on T2m and precipitation forecast

skill over North America from the improvements in the

wind forecasts are likely confined to week two [after

that, the y-wind skill is likely too low (,0.1) to have an

impact]. Ultimately the longest lead times at which we

can expect some improvement are constrained by the

y-wind limit of predictability, which is about 20 days.

Having said that, we find essentially no improvement in

North American precipitation forecasts with TBC at

those leads (not shown). On the other hand, we do find

some improvement in T2m forecasts (Fig. 13), especially

when we condition the forecasts on the amplitude of the

leading Rossby wave impacting North American cli-

mate in summer (Fig. 13, lower left; see also Schubert

et al. 2011). The results shown for day 10 (Fig. 13, top

right) indicate that some of the largest improvements

occur over Canada, consistent with where we expect the

leadingRossby wave to have the greatest impact on T2m

(Fig. 13, lower right). This increased skill in predicting

T2m apparently reflects the fact that the leading rotated

FIG. 11. (left) The standard deviation (1981–2016) of the DJF mean stationary waves (250-mb height with the

zonalmean removed) for (top) CNTRL-C, (middle) TBC-C, and (bottom)MERRA-2 (m). (right) The correlations

between the DJFmean Niño-3.4 index and the 250-mb eddy-height field for the (top) CNTRL-C, (middle) TBC-C,

and (bottom) MERRA-2.
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complex empirical orthogonal function RCEOF is

forecast with greater skill in the TBC-A hindcasts after

the first week (not shown).

2) BOREAL WINTER AND THE COUPLED MODEL

Our focus here is on whether the TBC approach

applied to the coupled model leads to improved bo-

real winter seasonal forecasts, especially over North

America, where we expect that any improvements in

SST variability, stationary waves, and ENSO-related

teleconnections might translate into improved fore-

cast skill. The forecasts were initialized on 1 Novem-

ber 1985–2015 and consist of 10 ensemble members

for both the CNTRL-C and TBC-C models (see

section 2c).

Figure 14 (top, middle) again provides an integrated

overview of the coupled hindcast results decomposed

into the various terms of (1), focusing in this case on the

eddy 250-mb height field. Averaged over the NH (top),

the total error appears to saturate after about two

months (in January), with CNTRL-C showing larger

total error than TBC-C. The larger total variance of

the CNTRL-C appears to reflect an intrinsic property of

the models (evident in the perfect-model results; red

curves), but it is also in part because of the development

of a larger bias in the control (green curves) both early

in the forecast (November/early December) and again

starting in January. The perfect-model RMSE ap-

proaches the unbiased RMSE (black curves) by mid-

December, indicating that most of the predictability

(based on RMSE) is lost by that time. In early February,

there is some hint that the TBC-C predictions have

somewhat smaller unbiased RMSE than the control

(black curves). For comparison, the results for the SH

indicate little difference between the TBC-C and

CNTRL-C hindcasts in either the drift or RMSE, con-

sistent with the less substantial TBC-derived im-

provement to the SH climate.

FIG. 12. (left) The RMSE decomposed according to (1) in the text for (top) the daily 250-mb u wind for the NH

and for (middle) the daily 250-mb y wind over the region (308–608N, 1208E–1208W); (bottom) the black curves show

the y250-mb correlations with MERRA-2 (while the red curves are the correlations for a perfect model) for the

same region (308–608N, 1208E–1208W). The dashed lines are for the control hindcasts, and the solid lines are for the

TBC hindcasts. Units for RMSE are m s21. Abscissa indicates days. (right) The y250-mb correlations at 12-day lead

for TBC-A, CNTRL-A, and the differences. Shading of the differences indicates a significance level of 0.10 based

on a Fisher’s z transform. Results are based on predictions initialized every day from 1May to 30 Jun in 1988, 1998,

and 2000–15. Five-member ensemble means are computed from lags 22,21,0, 1, and 2 days. See text for details.
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The bottom panel of Fig. 14 shows the correlations

with MERRA-2 for the PNA region (208–808N, 1508–
3008E). The perfect-model and TBC-C correlations with

MERRA-2 both drop to 0.3 by the beginning of De-

cember, the time at which the NH RMSE approaches

saturation. The control correlations with MERRA-2

drop even faster, reaching 0.2 by this time. There is,

however, some indication of a return of skill during Jan-

uary and February in the perfect-model results, pre-

sumably linked to the stronger impact of ENSOover some

parts of North America during these months (e.g., Jong

et al. 2018). The return of skill is also evident in the TBC-C

hindcasts, though less so in the control hindcasts. The ap-

parent increase in skill during February is consistent with

Chen et al. (2017), who found that, for ENSO-related T2m

and precipitation predictions over North America, the

skill for all of the NMME models tended to be higher

in February than in other winter months.

The evolution of the climate drift in the 250-mb eddy-

height fields (and the correlations) shown in Fig. 14

suggests that any improvement in wintertime seasonal

forecast skill from TBC-C over North America is likely

to occur early on (during the first month of the forecast)

and late in the forecast at lead times beyond roughly

two months.

The left set of nine plots in Fig. 15 show the hindcast skill

of the 250-mb eddy height over the Pacific–North Ameri-

can region averaged over the early (16 November–15

December), middle (16December–15 January), and later

(21 January–1 March) segments of the predictions. The

correlations (with MERRA-2) are shown for the

CNTRL-C (middle row) and TBC-C (top row) hind-

casts; differences are shown in the bottom row. The

correlations in both sets of hindcasts are overall, as

expected, high over the tropics/subtropics, with some

relatively high correlations (.0.6) also occurring over

FIG. 13. (top left) Differences in skill (correlation between the hindcasts and MERRA-2) at day 10 between

TBC-A and CNTRL-A based on all the hindcasts. Shading indicates a significance level of 0.10 based on a Fisher’s

z transform. (top right) As in top left, but for only those hindcasts when the leading Rossby wave has an amplitude

greater than one standard deviation in the initial conditions. (bottom left) The leading RCEOF of the NH (108–
808N) daily (filtered with a 11-day running mean) 250-mb meridional wind anomalies during May–August (MJJA)

computed fromMERRA-2 for the period 1980–2017 [see Chang et al. (2001) for details of theRCEOF calculation].

The contours (15, 20, and 25m s21) are the long-term mean MJJA 250-mb zonal wind based on MERRA-2. The

phase of theRCEOFplotted here is chosen to highlight that phase duringwhich thewave has the greatest impact on

North American T2m as shown in the bottom right. The values of the RCEOF (m s21) and T2m (8C) correspond to

composites based on those times when the associated rotated complex principle component (RCPC) exceeded one

standard deviation.
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the North Pacific, western North America, and the

southeastern United States. Over North America, the

difference maps show some improvement in skill for

the TBC-C height hindcasts for the early segment and

again some improvement for the late segment (though

marginally significant), with no improvement for the

middle segment—results that are consistent with the line

plots of the correlations in Fig. 14. These apparent im-

provements in the skill of the eddy-height predictions

occur in the absence of any significant improvements in

the tropical Pacific SST forecasts (not shown).

Themiddle (right) set of nine panels of Fig. 15 show the

correlations for T2m (precipitation) over North America.

As with the eddy heights, the largest improvements for

T2m hindcasts occur early on and again late in the fore-

casts, with no skill, or even reduced skill, compared to

CNTRL-C for the interval in between. For precipitation,

TBC shows overall little improvement in skill, with some

scattered improvements along the west coast early in the

forecast. During themiddle period, TBC-C actually shows

substantial areas of degraded skill relative to CNTRL-C,

especially over the southeastern United States.

FIG. 14. The RMSE decomposed according to (1) in the text for the 250-mb eddy height for

the (top) NH and (middle) SH. The dashed lines are for the CNTRL-C hindcasts, and the

solid lines are for the TBC-C hindcasts. Units are m. (bottom) The PNA region 250-mb eddy-

height correlations with MERRA-2 (black lines) and for a perfect model (red lines). The

yellow lines, which are the bottom 5% of the correlations with MERRA-2 obtained from all

combinations of removing 5 years from the 31 years of data (total of 169 911), give an in-

dication of the robustness of the 250-mb eddy-height correlations with MERRA-2. The daily

fields have a 31-day running mean applied to remove weather and other submonthly noise.

Results are based on 10 ensemble members initialized 1 Nov 1985–2015.
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4. Discussion and conclusions

This study examined the overall impact of correcting

biases in short-term atmospheric tendencies in a general

circulation model. Results are presented for two dif-

ferent versions of the NASA GMAO GEOS model (an

AGCM forced with observed SST and an updated

AGCM coupled to an ocean model). Our experiments

show that state-independent TBC to the atmosphere can

produce considerable improvements to the simulated

mean climate as well as to its variability on subseasonal

and, to some extent, seasonal and longer time scales. The

improvements are, however, not uniform and depend to

some degree on the quantity, region, and season, as well as

the model itself.

In discussing the TBC impacts on the model’s climate,

it is useful to consider them as being divided into those

that are direct and those that are indirect, with the lat-

ter including any quantities (such as precipitation and,

for the AOGCM, atmospheric moisture) that are not

explicitly forced by the TBC, as well as the transients,

since the TBC is a constant forcing term. It should be

emphasized, however, that even for those quantities

directly forced by the TBC (e.g., u, y, T), it is not a

forgone conclusion that the tendency errors in these

terms will be fully corrected by constant forcing terms.

There are several possible reasons for this, including the

possibility that the true errors cannot be represented

by a simple constant forcing term and are, in fact, state

dependent (e.g., Leith 1978; Danforth et al. 2007), as well

as the possibility that, even if the errors can be represented

in that way, the TBCs may be poor estimates of the true

corrections as a result of statistical sampling errors and/or

as a result of deficiencies/biases in the reanalysis. Fur-

thermore, it is not obvious that a model will respond to the

increments in a physically realistic way. It is quite possible

that, for example, correcting themoisture and temperature

profiles would lead to spurious feedbacks from themodel’s

convective scheme, which may have been tuned to pro-

duce realistic precipitation with somewhat different pro-

files. In the following, we provide some examples from our

results that serve to illustrate these issues.

The improvements in the midlatitude transients in

both the AGCM and AOGCM are a clear example of a

FIG. 15. Maps of the correlations (only where values are greater than 0) between the hindcast ensemble mean and observations for (left

nine) 250-mb eddy height, (middle nine) T2m over North America, and (right nine) precipitation over North America. Results are based

on 10 ensemble members initialized 1 Nov 1985–2015. (top) The TBC-C hindcasts and (middle) the CNTRL-C hindcasts. (bottom) The

differences in the correlations between the TBC-C and CNTRL-C hindcasts. Shading indicates a significance level of 0.10 based on a

Fisher’s z transform. Results are shown for averages over the following time periods: 16 Nov–15 Dec, 16 Dec–15 Jan, and 21 Jan–1 Mar.

15 JANUARY 2019 CHANG ET AL . 657

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/28/22 06:39 PM UTC



positive indirect impact—an impact that is very likely

strongly tied to the improvements in the jets. The nature

of the improvements in the jets (or lack of improvement

in some cases) appears to vary with the seasons, the

hemisphere, and the model in question. TBC-A corrects

the poleward shift of both summer jets, consistent with

increased drag on the jets (e.g., Robinson 1997). Since

the summer jets are largely eddy driven (e.g., Lachmy

and Harnik 2016), it is likely that the improvement in

the jets also drives (and interacts with) the improved

transient-eddymomentum transport. Additional work (not

shown) indicates that jet biases throughout the Northern

Hemisphere are particularly sensitive to temperature errors

over and near Tibet, suggesting that corrections in this area

may be especially important in correcting the NH summer

jets (an example of a positive indirect impact). The TBC-A

does less well in correcting the high-latitude zonal winds in

the SH upper troposphere/lower stratosphere during win-

ter, suggesting that uncorrected errors in stratospheric dy-

namics and reanalysis quality (poor estimates of the

increments) may be issues.

The primary zonal wind errors in theAOGCMappear

to be fundamentally different in character compared

with the AGCM errors, consisting of excessive sub-

tropical westerlies in both hemispheres (though more so

in the NH) and during both seasons. These likely reflect

anomalous forcing/heating by the excessively strong

and split ITCZ in the coupled model. The fact that the

TBC-C corrects these zonal wind errors (and associated

transients), yet makes only modest corrections to the

tropical precipitation (especially during DJF), indicates

that the corrections to the zonal wind errors are forced

more directly by the increments. In fact, it appears that it

is the tropical midtropospheric temperature increments

that appear to play a key role duringDJF, presumably in

part by reducing the strong tropical warm bias in that

run. At longer time scales, the impacts on the variability

of the SST (and the associated changes in tropospheric

height variability) in the TBC-C run is likely tied to

improvements in the equatorial surface stress (not

shown), though exactly how that acts to reduce the

ENSO variability is unclear. We note that the dramatic

reduction of the SST bias in TBC-C appears to be the

result of a combination of direct impacts from the near-

surface temperature increments (especially over the

Gulf Stream, the SH high latitudes, and equatorial and

coastal upwelling regions) and indirect impacts due to

the reductions in surface stress biases.6

Perhaps the strongest test of the TBC for improving

the climate characteristics of the model is the extent to

which the components of the hydrological cycle are

improved. We have seen clear improvements in the

precipitation in the AGCM results, both in the tropics

and in theU.S. Great Plains. Also, improved (increased)

cloudiness in TBC-A (not shown) appears to contribute

to the dramatic reduction in the warm bias over the NH

summer continents. Here we have a clear case where the

TBC impacts are indirect; the model’s parameteriza-

tions of moisture processes working with the states di-

rectly affected by TBC appear to produce more realistic

output—a result likely helped by the fact that the

AGCM is the same as that used to generate MERRA-2

(though run at lower resolution). In contrast, TBC-C

produced considerably less improvement to the pre-

cipitation, including little improvement to the ITCZ

(especially during DJF), but also no improvement to the

summer dry bias over the U.S. Great Plains. Here it is

instructive to compare the TBC-C and REPLAY-C

runs. To a large extent, the lack of improvement (or

even degradation as seen over SouthAmerica inDJF) in

the TBC-C run is already reflected in REPLAY-C run.

As such, this does not appear to reflect a limitation of the

TBC approach, but instead an inconsistent or lack of

forcing by the increments (recall that we do not correct

the moisture in the AOGCM).

A key goal of this study was to determine whether the

improved climate characteristics of the model induced

by TBC translate into improved forecast skill (perhaps

the ultimate indirect impact). We found, however, that

TBC-related skill improvements were rather modest at

best at both subseasonal and seasonal time scales. For

the uncoupled case, where our focus was on boreal

summer and subseasonal forecasts, the improvements in

the NPSJ and the transient-eddy activity led to only

modest improvements in the T2m forecasts over North

America (and only when conditioned on the leading

Rossby wave impacting North America), and to no im-

provement in the precipitation forecasts. In the coupled

case, our focus was on improving boreal winter forecast

skill over North America at seasonal time scales. Here

too, despite various improvements to the stationary

waves and related transients, and despite what appears to

be more realistic ENSO variability and associated tele-

connections, the impact of TBC on skill was not uniform

with forecast lead and was again overall quite modest.

We interpret these hindcast results in terms of

predictability limits and the time it takes the relevant

aspects of climate drift to become large enough to begin

having an impact on skill (and thus the time it would

take for TBC-based reductions of the drift to affect the

skill). In the uncoupled case, focusing on boreal summer

6 The bias in cloud fraction has actually increased in TBC-C (less

cloudiness), indicating this did not contribute to the reduction in

the SST warm bias.
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and North America, the climate drift in the North Pacific

waveguide (believed to be a key controlling factor for

Rossbywaves enteringNorthAmerica) appears to develop

too slowly in CNTRL-A (reaching only about one-half the

long-term value at 10 days’ lead) to allow its correction in

TBC-A to produce more than a modest impact (via more

skillful Rossby wave predictions) on week 2 T2m forecasts

(when skill is already rather low). In the coupled case, fo-

cusing on boreal winter over North America, our assess-

ment of the drift in the stationary waves suggests two

adjustment time scales: an early drift that develops during

the first month (presumably dynamically driven) and a

more slowly developing drift that occurs during months 3

and 4 (presumably linked to deficiencies in coupled pro-

cesses). In contrast, the corrected model experienced an

early drift that took longer to develop than in the control

and never experienced the slow drift of the control model

during months 3 and 4. There thus appears to be two win-

dows (one early and one late) during which TBC could

induce improved forecasts. This indeed appears to be borne

out in the forecasts of both eddy heights over the Pacific–

North American region and T2m over North America.

Additional improvements in forecast skill might be

possible with a state-dependent correction if the asso-

ciated statistical sampling issues can be overcome (e.g.,

Leith 1978; Danforth et al. 2007). In fact, it is possible

that the modest impacts on skill (or even reductions in

skill) found here reflect the presence of state-dependent

errors that may or may not be in phase with the state-

independent errors. Our TBC approach nevertheless

provides a reasonable baseline of what can currently be

achieved with state-independent corrections to a global

climate model employing a state-of-the-art atmospheric

reanalysis. The approach is relatively easy to imple-

ment and, since it is based on very short-term forecasts

when the error growth is still linear, appears to produce

corrections that (to a large extent) reflect physically

realistic adjustments to the model equations.

It is, however, likely that substantial further im-

provements will require model-system improvements

not directly addressed by TBC, improvements involving,

for example, land/atmosphere interaction, cloud/radia-

tive processes, and initialization procedures for (and

quality of) atmospheric, land, and ocean states. While

potential improvements in forecast skill may not be the

main impetus for carrying out the TBC, we believe that

TBC-induced improvements in transients, stationary

waves, and other climate characteristics can be a key

motivating factor for employing the approach. Such

improvements can make the model better suited for

addressing a host of climate problems, such as those that

require addressing regional impacts of global climate

variability and change.
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APPENDIX

Methodology

As described in Takacs et al. (2018), the replay ap-

proach takes advantage of the IAUprocedure employed

in the GEOS data assimilation system to force a model

to track a preexisting analysis. The basic approach is

shown schematically in Fig. A1. The blue arrows indicate

that the replay is essentially a continuous model simula-

tion that is driven by a sequence of IAU forcing terms

(updated every 6 h) computed as the difference between

a short forecast and the corresponding analysis. The

general form of the equations governing a replay can be

written (for a quantity q) as

›q

›t
5 f (q)1Dq , (A1)

where Dq5 (analysis2 forecast)/6h, and f(q) is the

tendency associated with all the dynamics and physics

terms of the model—in other words, it corresponds

to the uncorrected model. For the coupled model re-

play performed as part of this study, the increments

are computed for the winds, temperature, and surface

pressure.

The governing equations for the TBC approach have

the same form as (1), except that the forcing term associ-

ated with the increments is no longer an instantaneous

value (specific to a particular 6-h period), but is instead a

long-term mean. In particular,

›q

›t
5 f (q)1Dq , (A2)

where the Dq are 6-hourly values that are averaged over

the years 1980–2015 separately for each 6-h time period

of each day of year,7 and as such retain the diurnal and

annual cycles. The above indicates that the model with

the TBC [(A2)] can be considered as an approximation

of (A1), in which the correction term is simplified to

retain only the first-moment statistics (the mean) of

the increments, the assumption being that such simple

corrections nevertheless represent physically realistic

7 In the case of the coupled model we further apply a 7-day

running mean to the increments, though this is done in a way that

retains the mean diurnal cycle.
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systematic adjustments to the model’s physics and/or

dynamics tendency terms.

As noted in the text, in the case of the AGCM, instead

of replaying to MERRA-2 to obtain the Dq terms, we

take advantage of the fact that the AGCM used here is

the same as that used to generate MERRA-2 (though

run at lower resolution) and so we take the increments

directly from the MERRA-2 archive (appropriately

averaged to the reduced resolution of the AGCM). This

was not the case for the AOGCM. We could not simply

couple the corrected AGCM to the ocean, but found

it necessary to replay to the MERRA-2 atmosphere

running in coupled mode to obtain the increments ap-

propriate for correcting the biases that develop in the

coupled model.

Finally, in assessing the quality of the climates of the

TBC simulations, the above makes it clear that the most

fair comparison to make is with the climate of the cor-

respondingreplay run, as we do for the coupled model.

In the case of the AGCM, (which is a lower-resolution

version of the same model used to produce MERRA-2)

such a comparison is, however, essentially equivalent to

comparing with MERRA-2, since (A1) would to a large

extent reproduce the reanalysis, though of course at

lower resolution.
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